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Abstract

Data mining is a very popular technique and has been widely applied in different areas these days. The artificial neural network has become

a very popular alternative in prediction and classification tasks due to its associated memory characteristics and generalization capability.

However, the relative importance of potential input variables and the long training process have often been criticized and hence limited its

application in handling classification problems. The objective of the proposed study is to explore the performance of data classification by

integrating artificial neural networks with the multivariate adaptive regression splines (MARS) approach. The rationale under the analyses is

firstly to use MARS in modeling the classification problem, then the obtained significant variables are used as the input variables of the

designed neural networks model. To demonstrate the inclusion of the obtained important variables from MARS would improve

the classification accuracy of the networks, diagnostic tasks are performed on one fine needle aspiration cytology breast cancer data set. As

the results reveal, the proposed integrated approach outperforms the results using discriminant analysis, artificial neural networks and

multivariate adaptive regression splines and hence provides an efficient alternative in handling breast cancer diagnostic problems.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Modern medical facilities are equipped with monitoring,

collecting and other devices which can provide inexpensive

ways to collect and store data in their information systems.

Huge amount of data stored in these databases need special

techniques for processing, analyzing, and effective use of

them before these data can be helpful supports in handling

medical related decision-making problems. Data mining

(DM), sometimes referred to as knowledge discovery in

database (KDD), is a systematic approach to find underlying

patterns, trend, and relationships buried in data. According

to Curt (1995), the methodologies consist of data

visualization, machine learning, statistical techniques, and

deductive database. And the related applications using

these methodologies can be summarized as classification,

prediction, clustering, summarization, dependency

modeling, linkage analysis, and sequential analysis

(Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Data mining

has drawn serious attention from both researchers and

practitioners due to its applications in decision support,

financial forecasting, fraud detection, marketing strategy,

process control, medical research and other related fields

(Cabena, Hadjinaian, Stadler, Verhees, & Zanasi, 1998;

Chen, Han, & Yu, 1996; Fayyad et al., 1996; Lee, Sung, &

Chang, 1999; Ngan, Wong, Lam, Leung, & Cheng, 1999;

Pendharkar, Rodger, Yaverbaum, Herman, & Benner,

1999).

Breast cancer, a very common and serious cancer for

women, affects almost one in every seven women in the

United States (Wingo, Tong, & Bolden, 1995). One of the

most commonly used methods in detecting breast cancer is

mammography. However, literature has reported that

radiologists show considerable variation in interpreting a

mammography (Elmore et al., 1994). On the other hand, fine

needle aspiration cytology (FNAC) is also widely adopted in

the diagnosis of breast cancers. But, according to Fentiman

(1998), the average correct identification rate of FNAC

is only about 90%. It is therefore an absolute necessity

to develop better identification tools in recognizing

breast cancers. Owing to the above-mentioned needs,
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several researchers have used statistical and artificial

intelligence techniques to successfully ‘predict’ breast

cancer (Kovalerchuck, Triantaphyllou, Ruiz, & Clayton,

1997; Pendharkar et al., 1999). Basically, the objective

of these identification techniques is to assign patients

to either a ‘benign’ group that does not have breast

cancer or a ‘malignant’ group who has strong evidence of

having breast cancer. And hence the breast cancer

diagnostic problems are basically in the scope of the more

general and widely discussed classification problems

(Anderson, 1984; Dillon & Goldstein, 1984; Hand, 1981;

Johnson & Wichern, 2002).

Generally, discriminant analysis and logistic regression

are two most commonly used data mining techniques to

construct classification models. However, linear discrimi-

nant analysis (LDA) has often been criticized due to its

assumption about the categorical nature of the data and the

fact that the covariance matrices of different classes are

unlikely to be equal (Reichert, Cho, & Wagner, 1983). In

addition to the LDA approach, logistic regression is an

alternative to conduct classification tasks. Basically, the

logistic regression model was emerged as the technique in

predicting dichotomous outcomes. Harrell and Lee (1985)

found out that logistic regression is as efficient as LDA.

However, it is also being criticized for some strong model

assumptions like variation homogeneity and hence limited

its application. Theoretically, both LDA and logistic

regression are appropriate modeling tools when the

relationship among variables is linear. In addition to

LDA and logistic regression, artificial neural networks

became an efficient alternative in modeling classification

problems due to its capability to capture complex nonlinear

relationships among variables. Even though neural net-

works have reported to have better classification capability

than LDA and logistic regression (Desai, Crook, &

Overstreet, 1996; Jensen, 1992; Lee, Chiu, Lu, & Chen,

2002; Piramuthu, 1999; West, 2000), it is, however, also

being criticized for its long training process in designing

the optimal network’s topology and hard to identify the

relative importance of potential input variables, and hence

limited its applicability in handling classification

problems (Chung & Gray, 1999; Craven & Shavlik, 1997;

Lee et al., 2002).

In addition to the above-mentioned techniques, multi-

variate adaptive regression splines (MARS) is another

commonly discussed data mining technique nowadays.

MARS is widely accepted by data mining practitioners

for the following facts. Firstly, unlike LDA and logistic

regression, MARS exhibits the capability of modeling

complex relationship among variables without strong

model assumptions. Besides, unlike neural networks,

MARS can identify ‘important’ independent variables

through the built basis functions (more details will be

discussed in Section 2) when many potential variables

are considered. Thirdly, MARS does not need long training

process and hence can save lots of modeling time when

the data set is huge. Finally, one strong advantage of MARS

over other classification techniques is the resulting model

can be easily interpreted. It not only points out which

variables are important in classifying objects/observations,

but also indicates a particular object/observation belongs to

a specific class when the built rules are satisfied. The final

fact has important implications and can help professionals

make appropriate decisions.

Aiming at improving the above-mentioned drawbacks of

neural networks and increasing the classification accuracies

of the existing approaches, the objective of the proposed

study is to explore the performance of breast cancer

diagnosis using a two-stage hybrid modeling procedure in

integrating multivariate adaptive regression splines

approach with neural networks technique. The rationale

underlying the analyses is firstly to use MARS in modeling

the breast cancer diagnostic problems. Then the obtained

significant predictor variables are served as the input

variables of the designed neural networks model. Please

note that it is valuable to use MARS as a supporting tool for

designing the topology of neural networks as we can learn

more about the inner workings. Besides, as there is no

theoretical method in determining the best input variables of

a neural network model, MARS can be implemented as a

generally accepted method for determining a good subset of

input variables when many potential variables are con-

sidered in deciding the input vector of the designed neural

network model. To demonstrate the feasibility and effec-

tiveness that the inclusion of the obtained predictor

variables from MARS would improve the classification

accuracy of the neural network model, breast cancer

diagnostic tasks are performed on one FNAC dataset. As

to the structure of the designed neural network model,

sensitivity analysis is firstly employed to solve the issue of

finding the appropriate setup of the network’s topology.

Analytic results demonstrated that the proposed hybrid

model provides a better initial solution and hence converges

much faster than the conventional neural networks model.

Besides, in comparison with the traditional neural

network approach, the classification accuracy increases in

terms of the proposed hybrid methodology. Moreover, the

superior classification capability of the proposed technique

can be observed by comparing the results with those using

linear discrimintant analysis and solely using MARS

approaches.

The rest of the paper is organized as follows. We will

give a brief review and related literature of neural

networks and multivariate adaptive regression splines in

Section 2. The developments as well as the empirical

results of breast cancer diagnostic models using linear

discriminant analysis, MARS, neural networks, and the

hybrid model in integrating MARS and neural networks

approaches are presented in Section 3. Finally Section 4

addresses the conclusion and discusses the possible future

research areas.
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2. Research methodology and literature review

2.1. Artificial neural networks

Neural networks, originally derived from neurobiologi-

cal models, are massively parallel, computer-intensive, and

data-driven algorithmic systems composed of a multitude of

highly interconnected nodes, known as neurons as well.

Mimicking human neurobiological information-processing

activities, each elementary node of a neural network is able

to receive an input single from external sources or other

nodes and the algorithmic procedure equipped in each node

is sequentially activated to locally transforming the

corresponding input single into an output single to other

nodes or environment. From a holistic point of view on

systemic collaboration, a neural network features a number

of interconnected nodes serving as signal receivers and

senders, the network architecture designed to describe

connections between the nodes, and the training algorithm

associated with finding values of network parameters

(weights) for a particular network (Rumelhart, Hinton, &

Williams, 1986). Relying on interactions of linked nodes, an

output obtained from one node can serve as an input for

others nodes and the conversion of inputs into outputs is

activated by virtue of a certain transforming function that is

typically monotone, but otherwise arbitrary. Meanwhile, the

specified working function has to depend on parameters

determined with a training set of inputs and outputs. And the

network architecture is the organization of nodes and the

types of connections permitted. The nodes are arranged in a

series of layers with connections between nodes in different

layers, but not between nodes in the same layer. Generally,

nodes in the neural network can be divided into three layers:

the input layer, the output layer, and one or more hidden

layers. The layer receiving the inputs is called the input

layer. The final layer provides the target output signal is the

output layer. Any layers between the input and output layers

are hidden layers. A simple representation of a neural

network with one hidden layer can be shown in Fig. 1

(Rumelhart et al., 1986).

Neural networks can be classified into two different

categories, feedforward and feedback networks. The feed-

back networks contain nodes that can be connected to

themselves, enabling a node to influence other nodes as well

as itself. Kohonen self-organizing network and the Hopfield

network are examples of this type of network. On the other

hand, the nodes in feedforward networks can just take inputs

only from the previous layer and send outputs to the next

layer. The ADALINE and backpropagation neural networks

(BPN) are two typical examples of this kind of network.

BPN is a network essentially using a gradient steepest

descent training algorithm and has been the most often

utilized paradigm to date. For the gradient descent training

algorithm, the step size, called the learning rate, must be

specified first. The learning rate is crucial for BPN since

smaller learning rates tend to slow down the learning

process before convergence while larger ones may cause

network oscillation and unable to converge.

Neural networks are increasingly found to be useful in

modeling non-stationary processes due to its associated

memory characteristics and outstanding generalization

capability (Stern, 1996). More and more computer scientists

and statisticians have interests in the computational

potentials of neural network algorithms. Haykin (1994)

wrote a comprehensive reference on artificial neural

networks. Anderson and Rosenfeld (1988) edited a collec-

tion of papers that chronicled the major developments in

neural network modeling. Cheng and Titterington (1994),

Repley (1994), and Stern (1996) provided surveys describ-

ing the relevance of neural networks to the statistics

community. As to the issue of determining the appropriate

network topology: the number of layers, and the number of

neurons in each layer, and the appropriate learning

rates, please refer to Cybenko (1989), Davies (1994),

Hecht-Nielsen (1990), Hornik et al. (1989), Kang (1991),

Lippmann (1987), Tang and Fishwick (1993), and Wong

(1991) for more details about the above issues.

Neural networks have been widely used in engineering,

science, education, social science, medical research,

business, forecasting and related fields (Cheng & Titter-

ington, 1994; Chiu, Shao, & Lee, 2003; Lee & Chen, 2002;

Lee & Chiu, 2002; Lee et al., 2002; Repley, 1994; Stern,

1996; Vellido, Lisboa, & Vaughan, 1999; Zhang, Patuwo, &

Hu, 1998). The majority of the above references have

reported that the classification accuracies of neural networks

are better than those using discriminant analysis and logistic

regression techniques.

2.2. Multivariate adaptive regression splines

MARS is first proposed by Friedman (1991) as a flexible

procedure which models relationships that are nearly

additive or involve interactions with fewer variables. The

modeling procedure is inspired by the recursive partitioning

technique governing classification and regression tree

(CART, Breiman, Friedman, Olshen, & Stone, 1984) andFig. 1. A three-layer backpropagation neural networks.
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generalized additive modeling (Hastie & Tibshirani, 1990),

resulting in a model that is continuous with continuous

derivatives. It excels at finding optimal variable transform-

ations and interactions, the complex data structure that often

hides in high-dimensional data. And hence can effectively

uncover important data patterns and relationships that are

difficult, if not impossible, for other methods to reveal.

MARS essentially builds flexible models by fitting

piecewise linear regressions; that is, the nonlinearity of a

model is approximated through the use of separate

regression slopes in distinct intervals of the predictor

variable space. Therefore the slope of the regression line

is allowed to change from one interval to the other as the

two ‘knot’ points are crossed. The variables to use and the

end points of the intervals for each variable are found via a

fast but intensive search procedure. In addition to searching

variables one by one, MARS also searches for interactions

between variables, allowing any degree of interaction to be

considered.

The general MARS function can be represented using the

following equation (Friedman, 1991):

f̂ðxÞ ¼ a0 þ
XM
m¼1

am

YKm

k¼1

½skmðxvðk;mÞ 2 tkmÞ�þ

where a0 and am are parameters, M is the number of basis

functions, Km is the number of knots, skm takes on values of

either 1 or 21 and indicates the right/left sense of the

associated step function, vðk;mÞ is the label of the

independent variable, and tkm indicates the knot location.

The optimal MARS model is selected in a two-stage

process. Firstly, MARS constructs a very large number of

basis functions are selected to overfit the data initially,

where variables are allowed to enter as continuous,

categorical, or ordinal- the formal mechanism by which

variable intervals are defined, and they can interact with

each other or be restricted to enter in only as additive

components. In the second stage, basis functions are deleted

in order of least contribution using the generalized cross-

validation (GCV) criterion (Craven & Wahba, 1979). A

measure of variable importance can be assessed by

observing the decrease in the calculated GCV values

when a variable is removed from the model. The GCV

can be expressed as follows:

LOFðf̂MÞ ¼ GCVðMÞ ¼
1

N

XN
i¼1

½yi 2 f̂MðxiÞ�
2
= 1 2

CðMÞ

N

� �2

where there are N observations, and CðMÞ is the cost-

penalty measures of a model containing M basis function

(therefore the numerator measures the lack of fit on the M

basis function model fMðxiÞ and the denominator denotes the

penalty for model complexity CðMÞ).

Missing values can also be handled in MARS by using

dummy variables indicating the presence of the missing

values. By allowing for any arbitrary shape for the function

as well as interactions, and by using the above-mentioned

two-stage model building procedure, MARS is capable of

reliably tracking the very complex data structures that often

hide in high-dimensional data. Please refer to Friedman

(1991) for more details regarding the complete model

building process.

The interpretation of the resulting MARS model is

achieved through individual plots of risk. For variables that

enter into the model additively, a risk line plot showing each

variable’s individual contribution to the risk may be

constructed. This is simply a plot of the risk (or log odds)

represented by each basis function in the model that

involves the variable of interest, for the range of values

that the variable takes on in the data. Interactions can also be

visualized as risk images showing the combined contri-

bution of the variable’s risk in the model. Points are only

plotted for the data that are available. High levels of risk are

indicated by dark grey areas on the plot and low levels of

risk are represented by light grey regions. These types of

plots are not only restricted to interactions but can also be

used to visualize the contributions of variables that enter

into the model additivity and are highly correlated with one

another.

MARS has been widely used in handling problems in the

areas of forecasting and classifications (De Gooijer, Ray, &

Krager, 1998; Friedman & Roosen, 1995; Griffin, Fisher,

Friedman, & Ryan, 1997; Kuhnert, Do, & McClure, 2000;

Lewis & Stevens, 1991; Nguyen-Cong et al., 1996;

Ohmann, Moustakis, Yang, & Lang, 1996). For other

detailed list of the referred articles using MARS, the readers

can login in to website http://www.salford-systems.com/

MARSCITE.PDF provided by Salford Systems for more

details.

3. Empirical study

In order to verify the feasibility and effectiveness of the

proposed two-stage hybrid modeling procedure, one FNAC

dataset provided by department of surgery, human oncology

and computer sciences, University of Wisconsin at Madison

is used in this study (Bennett & Mangasarian, 1992;

Mangasarian, Setiono, & Wolberg, 1990). The data set

consists of 569 patients’ records. Among them, 212 are

reported to have breast cancers while the remaining 357 are

not. The diagnostic results of each patient consist of 30

predictor variables and are summarized in Table 1. And the

response variable of the classification model is the

diagnostic status of the patient-with or without breast

cancers (the readers can refer to the website http://www.cs.

wisc.edu/~olvi/uwmp/cancer.html for more details and

descriptions about this data set). With the 569 patients

used in this study, 398 patients (70% of the total patients)

with respect to the ratio of having and not having breast

cancers were randomly selected as the model building set

(training sample) while the remaining 171 (30% of the total
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patients) will be retained as the validation set (testing

sample).

The neural network simulator Qnet97, developed by

Vesta Services Inc (1998), was utilized to develop the neural

networks as well as the two-stage hybrid diagnostic models.

It is a C based simulator that provides a system for

developing backpropagation neural network configurations

using the generalized delta learning algorithm. The

discriminant analysis models will be implemented using

the popular SPSS 1997 (1998) software. And MARS 2.0

(2001) provided by Salford Systems is used in building the

MARS diagnostic models. All the modeling tasks are

implemented on a PC with Intel Pentium II 750 MHz CPU

processor. The detailed classification results using the

above-mentioned four modeling techniques can be sum-

marized as follows.

3.1. Discriminant analysis model

Among the variable selection procedures which can be

used in this study, the stepwise discriminant analysis

approach (Johnson & Wichern, 2002; Neter, Kutner,

Nachtsheim, & Wasserman, 1996) is adopted in building

the discriminant analysis diagnostic model.1 Ten significant

predictor variables are selected in the final discriminant

function, namely worst concave points, worst radius, worst

texture, worst area, standard error smoothness, mean

perimeter, standard error radius, standard error compact-

ness, worst cancavity and standard error cancavity. The

diagnostic results using the obtained discriminant function

are summarized in Table 2. From the results revealed in

Table 2, we can observe that the average correct

classification rate is 95.91% with 7 class 1 patients

misclassified as class 2 patients (Here a class 1 patient is

a patient whose status is without breast cancer while a class

2 patient is a patient with breast cancer. The latter discussion

will be used the same terminology accordingly).

3.2. Multivariate adaptive regression splines model

The variable selection results using MARS diagnostic

model can be summarized in Table 3. It is observed that worst

area, mean radius, mean texture, mean concave points, worst

concave points, worst symmetry, standard error concavity

and standard error compactness do play crucial roles in

deciding the MARS diagnostic models. The diagnostic

results using the obtained MARS model can be summarized

in Table 4. From the results in Table 4, we can observe that

the average correct classification rate is 97.66% with 1 (3)

class 1 (2) customers misclassified as class 2 (1) customers.

3.3. Neural networks model

Since Vellido et al. (1999) pointed out that more than

75% of applications using neural networks will use the BPN

training algorithms, this study will also use the popular BPN

Table 1

Predictor variables used in classifying breast cancer patterns

Mean radius Standard error radius Worst radius

Mean texture Standard error texture Worst texture

Mean perimeter Standard error perimeter Worst perimeter

Mean area Standard error area Worst area

Mean smoothness Standard error smoothness Worst smoothness

Mean compactness Standard error compactness Worst compactness

Mean concavity Standard error concavity Worst concavity

Mean concave

points

Standard error concave

points

Worst concave

points

Mean symmetry Standard error symmetry Worst symmetry

Mean fractal

dimension

Standard error fractal

dimension

Worst fractal

dimension

Table 2

Diagnostic results using discriminant analysis

Actual class Classified class

1 (without breast

cancer)

2 (with breast

cancer)

1(without breast

cancer)

100(93.46%) 7(6.54%)

2(with breast

cancer)

0(0.00%) 64(100.00%)

Average correct

classification

rate: 95.91%

Table 3

Basis functions and important predictor variables using MARS

Fun Std. dev. GCV NO.BF Variable Relative

importance

(%)

1 0.504 0.055 2 Worst area 100.000

2 0.334 0.048 1 Mean radius 70.064

3 0.076 0.045 1 Mean texture 54.408

4 0.182 0.045 1 Mean concave

points

54.152

5 0.110 0.044 2 Worst concave

points

49.757

6 0.040 0.042 1 Worst symmetry 27.571

7 0.042 0.041 1 Standard error

concavity

23.841

8 0.037 0.041 1 Standard error

compactness

15.533

1 If the covariance matrices of the given populations are not equal, the

quadratic discriminant analysis (QDA) should be applied because the

separation surface is a quadratic function. Despite the fact that LDA is a

special case of QDA with stronger assumptions which should restrict its

applications, in fact LDA has reported to be a more robust method when the

theoretical presumptions are violated (Sanchez & Sarabia, 1995; Sharma,

1996). And hence the LDA approach will be used in building the diagnostic

model in this paper.
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in building the neural network diagnostic model. As

recommended by Cybenko (1989) and Hornik et al.

(1989) that one-hidden-layer network is sufficient to

model any complex system with any desired accuracy, the

designed network model will have only one hidden layer.

And since there are 30 input nodes in the input layer (refer to

Table 1 for details), the initial number of hidden nodes to be

tested was chosen to be 58, 59, 60, 61, and 62 (other possible

number of hidden nodes have also been tested and no better

results can be obtained). And the network has only one

output node, status of the patient-with or without breast

cancers. As Rumelhart et al. (1986) concluded that lower

learning rates tended to give better network results and the

networks were unable to converge when the learning rate is

greater then 0.010, learning rates 0.006, 0.008, and 0.010 are

tested during the training process. The convergence criteria

used for training are a root mean squared error (RMSE) less

than or equal to 0.0001 or a maximum of 3000 iterations.

The network topology with the minimum testing RMSE is

considered as the optimal network topology.

The prediction results of the BPN networks with

combinations of different hidden nodes and learning rates

are summarized in Table 5. From Table 5, the {30-60-1}

topology with a learning rate of 0.010 gives the best result

(minimum testing RMSE). Here {ni-nh-no} stands for

the number of neurons in the input layer, number of neurons

in the hidden layer and number of neurons in the output

layer, respectively. To examine the convergence character-

istics of the proposed neural networks model, the RMSE

during the training process for the {30-60-1} network with

the learning rate of 0.010 are depicted in Fig. 2. The

excellent convergence characteristics of the constructed

{30-60-1} networks can easily be observed.

The diagnostic results using the designed BPN model can

be summarized in Table 6. From the results in Table 6, we

can observe that the average correct classification rate is

98.25% with only three class 1 patients misclassified as

class 2 patients. By comparing the results of Tables 2–6, it

can be observed that BPN has the highest average correct

classification rate in comparison with discriminant analysis

and MARS approaches.

Table 4

Diagnostic results using MARS

Actual class Classified class

1(without breast

cancer)

2(with breast

cancer)

1(without breast cancer) 106(99.07%) 1(0.93%)

2(with breast cancer) 3(4.69%) 61(95.31%)

Average correct

classification rate:

97.66%

Table 5

BPN model prediction results

Number of

hidden nodes

Learning

rates

Training

RMSE

Testing

RMSE

58 0.006 0.127845 0.137439

0.008 0.127363 0.137026

0.010 0.126763 0.136250

59 0.006 0.127793 0.137362

0.008 0.127285 0.136796

0.010 0.126879 0.136637

60 0.006 0.127777 0.137408

0.008 0.127097 0.136581

0.010 0.126278 0.135929

61 0.006 0.127900 0.137158

0.008 0.127264 0.136811

0.010 0.126781 0.136669

62 0.006 0.128131 0.137849

0.008 0.127501 0.136933

0.010 0.128987 0.139142

Fig. 2. The RMSE history of the {30-60-1} network during the training process.
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3.4. Hybrid model

The single-layer BPN model will again be used in

building the hybrid diagnostic model by integrating MARS

and BPN. The input layer of the hybrid model contains

eight input nodes (refer to Table 3 for more details), as the

hybrid model will use the significant predictor variables of

the obtained MARS diagnostic model as the input nodes.

As there are eight input nodes in the input layer, the initial

number of hidden nodes to be tested was set to be 12, 13,

14, 15, 16, 17, 18, 19 and 20 (again other possible number

of hidden nodes have also been tested and no better results

can be reported). And the network has only one output

node, the status of the patient—with or without breast

cancers. As the networks were unable to converge when

the learning rate is greater then 0.005, learning rates 0.001,

0.003, and 0.005 are tested during the training process. The

convergence criteria used for training are a root mean

squared error (RMSE) less than or equal to 0.0001 or a

maximum of 4000 iterations. Again the network topology

with the minimum testing RMSE is considered as the

optimal network topology.

The prediction results of the hybrid model are summar-

ized in Table 7. From Table 7, the {8-13-1} topology with a

learning rate of 0.005 gives the best result. The RMSE

during the training process for the {8-13-1} network

are depicted in Fig. 3. Again the excellence convergence

characteristics of RMSE of the proposed hybrid model can

easily be observed.

The diagnostic results using the hybrid model are

summarized in Table 8. Table 8 reveals that the average

correct classification rate is 98.25% with only three class 1

patients misclassified as class 2 patients. It can also be

observed that both BPN and the hybrid diagnostic models

have the same classification accuracies. However, we

believe that the hybrid model should be a better alternative

since it will identify important predictor variables which

may provide valuable information for further diagnostic

purposes.

Finally, in order to evaluate the classification capabilities

of the above four constructed diagnostic models, the

summarized results can be shown in Table 9. From the

results revealed in Table 9, we can conclude that both BPN

and the hybrid model have the best diagnostic capability in

terms of the average classification rate in comparison with

those using discriminant analysis and MARS models.

3.5. Type I, type II errors and the CPU times

of the constructed models

It is well known that, in order to evaluate the overall

classification capability of the designed diagnostic models,

the misclassification costs also have to be taken into account

(Johnson & Wichern, 2002; West, 2000). It is apparent that

the costs associated with Type I error (a patient without

breast cancer is misclassified as a patient with breast cancer)

and Type II error (a patient with breast cancer is misclassified

as a patient without breast cancer) are significantly different.

In general, the misclassification costs associated with Type II

errors are much higher than those associated with Type I

errors. Hence, special attention should pay to Type II errors in

order to evaluate the overall diagnostic capability. Table 10

summarizes the Type I and Type II errors of the four models

being discussed. As the results revealed in Table 10, both

BPN and the hybrid model have the lowest Type II error in

comparison with the other two approaches. Therefore we can

conclude that both BPN and the hybrid model not only have

better average classification rate, but also has lower Type II

errors and hence can successfully reduce the possible risks

Table 6

Diagnostic results using BPN

Actual class Classified class

1(without breast

cancer)

2(with breast

cancer)

1(without breast cancer) 104(97.20%) 3(2.80%)

2(with breast cancer) 0(0.00%) 64(100.00%)

Average correct

classification rate:

98.25%

Table 7

Integrated hybrid model prediction results

Number of

hidden nodes

Learning

rates

Training

RMSE

Testing

RMSE

12 0.001 0.141755 0.158061

0.003 0.140051 0.154882

0.005 0.137766 0.152775

13 0.001 0.142014 0.157117

0.003 0.140196 0.154977

0.005 0.136845 0.151705

14 0.001 0.142645 0.158239

0.003 0.140092 0.154937

0.005 0.138805 0.153336

15 0.001 0.142114 0.157261

0.003 0.140168 0.155278

0.005 0.139143 0.153285

16 0.001 0.142610 0.157923

0.003 0.139616 0.154429

0.005 0.138192 0.152531

17 0.001 0.141526 0.156722

0.003 0.139952 0.154866

0.005 0.138979 0.152830

18 0.001 0.142437 0.157684

0.003 0.140516 0.155227

0.005 0.139081 0.153253

19 0.001 0.142394 0.157615

0.003 0.140613 0.155258

0.005 0.139028 0.143059

20 0.001 0.142353 0.157918

0.003 0.139502 0.154227

0.005 0.139086 0.152993
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due to the high misclassification costs associated with Type II

errors.

Finally, the running time in implementing the classifi-

cation tasks on the computer is another factor needs to be

evaluated. Table 11 compares the CPU time in implement-

ing the BPN and hybrid diagnostic models (for one

combination of hidden node and learning rate). From the

results revealed in Table 11, we can see that the CPU time

for the hybrid model is only about one third of that when

using BPN. Therefore the hybrid model should be a better

alternative than BPN since it can save lots of modeling time

with the same classification accuracy.

4. Conclusions and areas of future research

Breast cancer is a very common and serious cancer for

women through out the world. The commonly used

diagnostic techniques, like mammography and FNAC, are

reported to lack of high diagnostic capability. Therefore,

there is an absolute necessity in developing better diagnostic

techniques. Basically, the objective of these identification

techniques is to assign patients to either a ‘benign’ group

that does not have breast cancer or a ‘malignant’ group who

has strong evidence of having breast cancer. And hence

the breast cancer diagnostic problems are in the scope of the

more general and widely discussed classification problems.

Discriminant analysis is the most commonly used statistical

classification technique, but often being criticized due to its

strong model assumptions and lack of classification

accuracy. On the other hand, the artificial neural networks

has become a very popular alternative in the classification

Table 9

Classification results of the four constructed models

Diagnostic models Classification results

{1–1}

(%)

{2–2}

(%)

Average correct classification

rate (%)

Discriminant analysis 93.46 100.00 95.91

MARS 99.07 95.31 97.66

BPN 97.20 100.00 98.25

Hybrid model 97.20 100.00 98.25

Fig. 3. The RMSE history of the {8-13-1} hybrid model during the training process.

Table 8

Diagnostic results using the hybrid model

Actual class Classified class

1(without breast

cancer)

2(with breast

cancer)

1(without breast cancer) 104(97.20%) 3(2.80%)

2(with breast cancer) 0(0.00%) 64(100.00%)

Average correct

classification rate:

98.25%

Table 10

Type I and Type II errors of the four models

Diagnostic models Performance assessment

Type I error (%) Type II error (%)

Discriminant analysis 6.54 0.00

MARS 0.93 4.69

BPN 2.80 0.00

Hybrid model 2.80 0.00

Table 11

CPU time for BPN and hybrid models (one combination of parameters)

Diagnostic models Number of input nodes CPU time (s)

BPN 30 360

Hybrid model 8 120
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tasks due to its associated memory characteristic and

outstanding generalization capability. However, it is also

being criticized for its long training process in designing the

optimal network’s topology and hard to identify the relative

importance of potential input variables.

The purpose of this research is to propose a hybrid breast

cancer diagnostic model by integrating artificial neural

networks and multivariate adaptive regression splines

(MRAS). The rationale underlying the analyses is firstly

to use MARS in modeling the breast cancer diagnostic

problems. Then the obtained significant predictor variables

are served as the input nodes of the designed neural

networks model. To demonstrate the feasibility and

effectiveness that the inclusion of the obtained predictor

variables from MARS would improve the classification

accuracy of the neural networks model, breast cancer

diagnostic tasks are performed on one FNAC dataset.

Analytic results demonstrated that, both BPN and the

proposed hybrid model have better classification accuracy

and lower Type II errors associated with high misclassifi-

cation costs, in comparison with discriminant analysis and

MARS approaches. However, the hybrid model should be a

better alternative since it exhibits the capability in

identifying important predictor variables which may

provide valuable information for further diagnostic pur-

poses. Besides, the hybrid model can save lots of

implementation time on the computer and therefore shorten

the time for on time decisions.

Future researches may aim at collecting more important

variables that will increase the classification accuracies.

Using other data mining techniques, like CART, in

evaluating their diagnostic capabilities is also rec-

ommended. Integrating other artificial intelligence tech-

niques, like fuzzy discriminant analysis, genetic algorithms

and grey theory, with neural networks in further refining the

network structure and improving the classification accu-

racies may also being discussed.
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